About

Friday, April 29, 2022

Creating the DigitalOcean Logo in 3D With CSS

Howdy y’all! Unless you’ve been living under a rock (and maybe even then), you’ve undoubtedly heard the news that CSS-Tricks, was acquired by DigitalOcean. Congratulations to everyone! 🥳

As a little hurrah to commemorate the occasion, I wanted to create the DigitalOcean logo in CSS. I did that, but then took it a little further with some 3D and parallax. This also makes for quite a good article because the way I made the logo uses various pieces from previous articles I’ve written. This cool little demo brings many of those concepts together.

So, let’s dive right in!

Creating the DigitalOcean logo

We are going to “trace” the DigitalOcean logo by grabbing an SVG version of it from simpleicons.org.

<svg role="img" viewbox="0 0 24 24" xmlns="http://www.w3.org/2000/svg">
  <title>DigitalOcean</title>
  <path d="M12.04 0C5.408-.02.005 5.37.005 11.992h4.638c0-4.923 4.882-8.731 10.064-6.855a6.95 6.95 0 014.147 4.148c1.889 5.177-1.924 10.055-6.84 10.064v-4.61H7.391v4.623h4.61V24c7.86 0 13.967-7.588 11.397-15.83-1.115-3.59-3.985-6.446-7.575-7.575A12.8 12.8 0 0012.039 0zM7.39 19.362H3.828v3.564H7.39zm-3.563 0v-2.978H.85v2.978z"></path>
</svg>

Being mindful that we’re taking this 3D, we can wrap our SVG in a .scene element. Then we can use the tracing technique from my “Advice for Advanced CSS Illustrations” article. We are using Pug so we can leverage its mixins and reduce the amount of markup we need to write for the 3D part.

- const SIZE = 40
.scene
  svg(role='img' viewbox='0 0 24 24' xmlns='http://www.w3.org/2000/svg')
    title DigitalOcean
    path(d='M12.04 0C5.408-.02.005 5.37.005 11.992h4.638c0-4.923 4.882-8.731 10.064-6.855a6.95 6.95 0 014.147 4.148c1.889 5.177-1.924 10.055-6.84 10.064v-4.61H7.391v4.623h4.61V24c7.86 0 13.967-7.588 11.397-15.83-1.115-3.59-3.985-6.446-7.575-7.575A12.8 12.8 0 0012.039 0zM7.39 19.362H3.828v3.564H7.39zm-3.563 0v-2.978H.85v2.978z')
  .logo(style=`--size: ${SIZE}`)
    .logo__arc.logo__arc--inner
    .logo__arc.logo__arc--outer
    .logo__square.logo__square--one
    .logo__square.logo__square--two
    .logo__square.logo__square--three

The idea is to style these elements so that they overlap our logo. We don’t need to create the “arc” portion of the logo as we’re thinking ahead because we are going to make this logo in 3D and can create the arc with two cylinder shapes. That means for now all we need is the containing elements for each cylinder, the inner arc, and the outer arc.

Check out this demo that lays out the different pieces of the DigitalOcean logo. If you toggle the “Explode” and hover elements, you can what the logo consists of.

If we wanted a flat DigitalOcean logo, we could use a CSS mask with a conic gradient. Then we would only need one “arc” element that uses a solid border.

.logo__arc--outer {
  border: calc(var(--size) * 0.1925vmin) solid #006aff;
  mask: conic-gradient(transparent 0deg 90deg, #000 90deg);
  transform: translate(-50%, -50%) rotate(180deg);
}

That would give us the logo. The “reveal” transitions a clip-path that shows the traced SVG image underneath.

Check out my “Advice for Complex CSS Illustrations” article for tips on working with advanced illustrations in CSS.

Extruding for the 3D

We have the blueprint for our DigitalOcean logo, so it’s time to make this 3D. Why didn’t we create 3D blocks from the start? Creating containing elements, makes it easier to create 3D via extrusion.

We covered creating 3D scenes in CSS in my “Learning to Think in Cubes Instead of Boxes” article. We are going to use some of those techniques for what we’re making here. Let’s start with the squares in the logo. Each square is a cuboid. And using Pug, we are going to create and use a cuboid mixin to help generate all of them.

mixin cuboid()
  .cuboid(class!=attributes.class)
    if block
      block
    - let s = 0
    while s < 6
      .cuboid__side
      - s++

Then we can use this in our markup:

.scene
  .logo(style=`--size: ${SIZE}`)
    .logo__arc.logo__arc--inner
    .logo__arc.logo__arc--outer
    .logo__square.logo__square--one
      +cuboid().square-cuboid.square-cuboid--one
    .logo__square.logo__square--two
      +cuboid().square-cuboid.square-cuboid--two
    .logo__square.logo__square--three
      +cuboid().square-cuboid.square-cuboid--three

Next, we need the styles to display our cuboids. Note that cuboids have six sides, so we’re styling those with the nth-of-type() pseudo selector while leveraging the vmin length unit to keep things responsive.

.cuboid {
  width: 100%;
  height: 100%;
  position: relative;
}
.cuboid__side {
  filter: brightness(var(--b, 1));
  position: absolute;
}
.cuboid__side:nth-of-type(1) {
  --b: 1.1;
  height: calc(var(--depth, 20) * 1vmin);
  width: 100%;
  top: 0;
  transform: translate(0, -50%) rotateX(90deg);
}
.cuboid__side:nth-of-type(2) {
  --b: 0.9;
  height: 100%;
  width: calc(var(--depth, 20) * 1vmin);
  top: 50%;
  right: 0;
  transform: translate(50%, -50%) rotateY(90deg);
}
.cuboid__side:nth-of-type(3) {
  --b: 0.5;
  width: 100%;
  height: calc(var(--depth, 20) * 1vmin);
  bottom: 0;
  transform: translate(0%, 50%) rotateX(90deg);
}
.cuboid__side:nth-of-type(4) {
  --b: 1;
  height: 100%;
  width: calc(var(--depth, 20) * 1vmin);
  left: 0;
  top: 50%;
  transform: translate(-50%, -50%) rotateY(90deg);
}
.cuboid__side:nth-of-type(5) {
  --b: 0.8;
  height: 100%;
  width: 100%;
  transform: translate3d(0, 0, calc(var(--depth, 20) * 0.5vmin));
  top: 0;
  left: 0;
}
.cuboid__side:nth-of-type(6) {
  --b: 1.2;
  height: 100%;
  width: 100%;
  transform: translate3d(0, 0, calc(var(--depth, 20) * -0.5vmin)) rotateY(180deg);
  top: 0;
  left: 0;
}

We are approaching this in a different way from how we have done it in past articles. Instead of applying height, width, and depth to a cuboid, we are only concerned with its depth. And instead of trying to color each side, we can make use of filter: brightness to handle that for us.

If you need to have cuboids or other 3D elements as a child of a side using filter, you may need to shuffle things. A filtered side will flatten any 3D children.

The DigitalOcean logo has three cuboids, so we have a class for each one and are styling them like this:

.square-cuboid .cuboid__side {
  background: hsl(var(--hue), 100%, 50%);
}
.square-cuboid--one {
  /* 0.1925? It's a percentage of the --size for that square */
  --depth: calc((var(--size) * 0.1925) * var(--depth-multiplier));
}
.square-cuboid--two {
  --depth: calc((var(--size) * 0.1475) * var(--depth-multiplier));
}
.square-cuboid--three {
  --depth: calc((var(--size) * 0.125) * var(--depth-multiplier));
}

…which gives us something like this:

You can play with the depth slider to extrude the cuboids as you wish! For our demo, we’ve chosen to make the cuboids true cubes with equal height, width, and depth. The depth of the arc will match the largest cuboid.

Now for the cylinders. The idea is to create two ends that use border-radius: 50%. Then, we can use many elements as the sides of the cylinder to create the effect. The trick is positioning all the sides.

There are various approaches we can take to create the cylinders in CSS. But, for me, if this is something I can foresee using many times, I’ll try and future-proof it. That means making a mixin and some styles I can reuse for other demos. And those styles should try and cater to scenarios I could see popping up. For a cylinder, there is some configuration we may want to consider:

  • radius
  • sides
  • how many of those sides are displayed
  • whether to show one or both ends of the cylinder

Putting that together, we can create a Pug mixin that caters to those needs:

mixin cylinder(radius = 10, sides = 10, cut = [5, 10], top = true, bottom = true)
  - const innerAngle = (((sides - 2) * 180) / sides) * 0.5
  - const cosAngle = Math.cos(innerAngle * (Math.PI / 180))
  - const side =  2 * radius * Math.cos(innerAngle * (Math.PI / 180))
  //- Use the cut to determine how many sides get rendered and from what point
  .cylinder(style=`--side: ${side}; --sides: ${sides}; --radius: ${radius};` class!=attributes.class)
    if top
      .cylinder__end.cylinder__segment.cylinder__end--top
    if bottom
      .cylinder__end.cylinder__segment.cylinder__end--bottom
    - const [start, end] = cut
    - let i = start
    while i < end
      .cylinder__side.cylinder__segment(style=`--index: ${i};`)
      - i++

See how //- is prepended to the comment in the code? That tells Pug to ignore the comment and leave it out from the compiled HTML markup.

Why do we need to pass the radius into the cylinder? Well, unfortunately, we can’t quite handle trigonometry with CSS calc() just yet (but it is coming). And we need to work out things like the width of the cylinder sides and how far out from the center they should project. The great thing is that we have a nice way to pass that information to our styles via inline custom properties.

.cylinder(
  style=`
    --side: ${side};
    --sides: ${sides};
    --radius: ${radius};`
  class!=attributes.class
)

An example use for our mixin would be as follows:

+cylinder(20, 30, [10, 30])

This would create a cylinder with a radius of 20, 30 sides, where only sides 10 to 30 are rendered.

Then we need some styling. Styling the cylinders for the DigitalOcean logo is pretty straightforward, thankfully:

.cylinder {
  --bg: hsl(var(--hue), 100%, 50%);
  background: rgba(255,43,0,0.5);
  height: 100%;
  width: 100%;
  position: relative;
}
.cylinder__segment {
  filter: brightness(var(--b, 1));
  background: var(--bg, #e61919);
  position: absolute;
  top: 50%;
  left: 50%;
}
.cylinder__end {
  --b: 1.2;
  --end-coefficient: 0.5;
  height: 100%;
  width: 100%;
  border-radius: 50%;
  transform: translate3d(-50%, -50%, calc((var(--depth, 0) * var(--end-coefficient)) * 1vmin));
}
.cylinder__end--bottom {
  --b: 0.8;
  --end-coefficient: -0.5;
}
.cylinder__side {
  --b: 0.9;
  height: calc(var(--depth, 30) * 1vmin);
  width: calc(var(--side) * 1vmin);
  transform: translate(-50%, -50%) rotateX(90deg) rotateY(calc((var(--index, 0) * 360 / var(--sides)) * 1deg)) translate3d(50%, 0, calc(var(--radius) * 1vmin));
}

The idea is that we create all the sides of the cylinder and put them in the middle of the cylinder. Then we rotate them on the Y-axis and project them out by roughly the distance of the radius.

There’s no need to show the ends of the cylinder in the inner part since they’re already obscured. But we do need to show them for the outer portion. Our two-cylinder mixin use look like this:

.logo(style=`--size: ${SIZE}`)
  .logo__arc.logo__arc--inner
    +cylinder((SIZE * 0.61) * 0.5, 80, [0, 60], false, false).cylinder-arc.cylinder-arc--inner
  .logo__arc.logo__arc--outer
    +cylinder((SIZE * 1) * 0.5, 100, [0, 75], true, true).cylinder-arc.cylinder-arc--outer

We know the radius from the diameter we used when tracing the logo earlier. Plus, we can use the outer cylinder ends to create the faces of the DigitalOcean logo. A combination of border-width and clip-path comes in handy here.

.cylinder-arc--outer .cylinder__end--top,
.cylinder-arc--outer .cylinder__end--bottom {
  /* Based on the percentage of the size needed to cap the arc */
  border-width: calc(var(--size) * 0.1975vmin);
  border-style: solid;
  border-color: hsl(var(--hue), 100%, 50%);
  --clip: polygon(50% 0, 50% 50%, 0 50%, 0 100%, 100% 100%, 100% 0);
  clip-path: var(--clip);
}

We’re pretty close to where we want to be!

There is one thing missing though: capping the arc. We need to create some ends for the arc, which requires two elements that we can position and rotate on the X or Y-axis:

.scene
  .logo(style=`--size: ${SIZE}`)
    .logo__arc.logo__arc--inner
      +cylinder((SIZE * 0.61) * 0.5, 80, [0, 60], false, false).cylinder-arc.cylinder-arc--inner
    .logo__arc.logo__arc--outer
      +cylinder((SIZE * 1) * 0.5, 100, [0, 75], true, true).cylinder-arc.cylinder-arc--outer
    .logo__square.logo__square--one
      +cuboid().square-cuboid.square-cuboid--one
    .logo__square.logo__square--two
      +cuboid().square-cuboid.square-cuboid--two
    .logo__square.logo__square--three
      +cuboid().square-cuboid.square-cuboid--three
    .logo__cap.logo__cap--top
    .logo__cap.logo__cap--bottom

The arc’s capped ends will assume the height and width based on the end’s border-width value as well as the depth of the arc.

.logo__cap {
  --hue: 10;
  position: absolute;
  height: calc(var(--size) * 0.1925vmin);
  width: calc(var(--size) * 0.1975vmin);
  background: hsl(var(--hue), 100%, 50%);
}
.logo__cap--top {
  top: 50%;
  left: 0;
  transform: translate(0, -50%) rotateX(90deg);
}
.logo__cap--bottom {
  bottom: 0;
  right: 50%;
  transform: translate(50%, 0) rotateY(90deg);
  height: calc(var(--size) * 0.1975vmin);
  width: calc(var(--size) * 0.1925vmin);
}

We’ve capped the arc!

Throwing everything together, we have our DigitalOcean logo. This demo allows you to rotate it in different directions.

But there’s still one more trick up our sleeve!

Adding a parallax effect to the logo

We’ve got our 3D DigitalOcean logo but it would be neat if it was interactive in some way. Back in November 2021, we covered how to create a parallax effect with CSS custom properties. Let’s use that same technique here, the idea being that the logo rotates and moves by following a user’s mouse cursor.

We do need a dash of JavaScript so that we can update the custom properties we need for a coefficient that sets the logo’s movement along the X and Y-axes in the CSS. Those coefficients are calculated from a user’s pointer position. I’ll often use GreenSock so I can use gsap.utils.mapRange. But, here is a vanilla JavaScript version of it that implements mapRange:

const mapRange = (inputLower, inputUpper, outputLower, outputUpper) => {
  const INPUT_RANGE = inputUpper - inputLower
  const OUTPUT_RANGE = outputUpper - outputLower
  return value => outputLower + (((value - inputLower) / INPUT_RANGE) * OUTPUT_RANGE || 0)
}

const BOUNDS = 100      
const update = ({ x, y }) => {
  const POS_X = mapRange(0, window.innerWidth, -BOUNDS, BOUNDS)(x)
  const POS_Y = mapRange(0, window.innerHeight, -BOUNDS, BOUNDS)(y)
  document.body.style.setProperty('--coefficient-x', POS_X)
  document.body.style.setProperty('--coefficient-y', POS_Y)
}

document.addEventListener('pointermove', update)

The magic happens in CSS-land. This is one of the major benefits of using custom properties this way. JavaScript is telling CSS what’s happening with the interaction. But, it doesn’t care what CSS does with it. That’s a rad decoupling. I use this JavaScript snippet in so many of my demos for this very reason. We can create different experiences simply by updating the CSS.

How do we do that? Use calc() and custom properties that are scoped directly to the .scene element. Consider these updated styles for .scene:

.scene {
  --rotation-y: 75deg;
  --rotation-x: -14deg;
  transform: translate3d(0, 0, 100vmin)
    rotateX(-16deg)
    rotateY(28deg)
    rotateX(calc(var(--coefficient-y, 0) * var(--rotation-x, 0deg)))
    rotateY(calc(var(--coefficient-x, 0) * var(--rotation-y, 0deg)));
}

The makes the scene rotate on the X and Y-axes based on the user’s pointer movement. But we can adjust this behavior by tweaking the values for --rotation-x and --rotation-y.

Each cuboid will move its own way. They are able to move on either the X, Y, or Z-axis. But, we only need to define one transform. Then we can use scoped custom properties to do the rest.

.logo__square {
  transform: translate3d(
    calc(min(0, var(--coefficient-x, 0) * var(--offset-x, 0)) * 1%),
    calc((var(--coefficient-y) * var(--offset-y, 0)) * 1%),
    calc((var(--coefficient-x) * var(--offset-z, 0)) * 1vmin)
  );
}
.logo__square--one {
  --offset-x: 50;
  --offset-y: 10;
  --offset-z: -2;
}
.logo__square--two {
  --offset-x: -35;
  --offset-y: -20;
  --offset-z: 4;
}
.logo__square--three {
  --offset-x: 25;
  --offset-y: 30;
  --offset-z: -6;
}

That will give you something like this:

And we can tweak these to our heart’s content until we get something we’re happy with!

Adding an intro animation to the mix

OK, I fibbed a bit and have one final (I promise!) way we can enhance our work. What if we had some sort of intro animation? How about a wave or something that washes across and reveals the logo?

We could do this with the pseudo-elements of the body element:

:root {
  --hue: 215;
  --initial-delay: 1;
  --wave-speed: 2;
}

body:after,
body:before {
  content: '';
  position: absolute;
  height: 100vh;
  width: 100vw;
  background: hsl(var(--hue), 100%, calc(var(--lightness, 50) * 1%));
  transform: translate(100%, 0);
  animation-name: wave;
  animation-duration: calc(var(--wave-speed) * 1s);
  animation-delay: calc(var(--initial-delay) * 1s);
  animation-timing-function: ease-in;
}
body:before {
  --lightness: 85;
  animation-timing-function: ease-out;
}
@keyframes wave {
  from {
    transform: translate(-100%, 0);
  }
}

Now, the idea is that the DigitalOcean logo is hidden until the wave washes over the top of it. For this effect, we’re going to animate our 3D elements from an opacity of 0. And we’re going to animate all the sides to our 3D elements from a brightness of 1 to reveal the logo. Because the wave color matches that of the logo, we won’t see it fade in. Also, using animation-fill-mode: both means that our elements will extend the styling of our keyframes in both directions.

This requires some form of animation timeline. And this is where custom properties come into play. We can use the duration of our animations to calculate the delays of others. We looked at this in my “How to Make a Pure CSS 3D Package Toggle” and “Animated Matryoshka Dolls in CSS” articles.

:root {
  --hue: 215;
  --initial-delay: 1;
  --wave-speed: 2;
  --fade-speed: 0.5;
  --filter-speed: 1;
}

.cylinder__segment,
.cuboid__side,
.logo__cap {
  animation-name: fade-in, filter-in;
  animation-duration: calc(var(--fade-speed) * 1s),
    calc(var(--filter-speed) * 1s);
  animation-delay: calc((var(--initial-delay) + var(--wave-speed)) * 0.75s),
    calc((var(--initial-delay) + var(--wave-speed)) * 1.15s);
  animation-fill-mode: both;
}

@keyframes filter-in {
  from {
    filter: brightness(1);
  }
}

@keyframes fade-in {
  from {
    opacity: 0;
  }
}

How do we get the timing right? A little tinkering and making use of the “Animations Inspector” in Chrome’s DevTool goes a long ways. Try adjusting the timings in this demo:

You may find that the fade timing is unnecessary if you want the logo to be there once the wave has passed. In that case, try setting the fade to 0. And in particular, experiment with the filter and fade coefficients. They relate to the 0.75s and 1.15s from the code above. It’s worth adjusting things and having a play in Chrome’s Animation Inspector to see how things time in.

That’s it!

Putting it all together, we have this neat intro for our 3D DigitalOcean logo!

And, of course, this only one approach to create the DigitalOcean logo in 3D with CSS. If you see other possibilities or perhaps something that can be optimized further, drop a link to your demo in the comments!

Congratulations, again, to the CSS-Tricks team and DigitalOcean for their new partnership. I’m excited to see where things go with the acquisition. One thing is for sure: CSS-Tricks will continue to inspire and produce fantastic content for the community. 😎


Creating the DigitalOcean Logo in 3D With CSS originally published on CSS-Tricks. You should get the newsletter.



source https://css-tricks.com/creating-the-digitalocean-logo-in-3d-with-css/

Nested Transactions in jOOQ

Since jOOQ 3.4, we have an API that simplifies transactional logic on top of JDBC in jOOQ, and starting from jOOQ 3.17 and #13502, an equivalent API will also be made available on top of R2DBC, for reactive applications. As with everything jOOQ, transactions are implemented using explicit, API based logic. The implicit logic implemented … Continue reading Nested Transactions in jOOQ

from Java, SQL and jOOQ. https://ift.tt/kvBFegw
via IFTTT

Thursday, April 28, 2022

Setting Up CloudFront to Host Your Web App

In my last article, we went over how to set up a web app that serves chunks and bundles of CSS and JavaScript from CloudFront. We integrated it into Vite so that when the app runs in a browser, the assets requested from the app’s root HTML file would pull from CloudFront as the CDN.

While CloudFront’s edge caching does offer benefits, serving your app’s resources from these multiple locations is not without a cost of its own. Let’s take a look at a WebPageTest trace of my own web app, running with the configuration from the last blog post.

Notice the large connection times for lines 2-4. Line 1 is our HTML entry point. That HTML is parsed, the browser sees script and link tags for the JavaScript and CSS assets that reside on the CDN, and requests them. This causes a new connection to be set up which, as you can see, takes time.

This post will show you how to get around this. We’ll walk through how to host the entire web app on CloudFront and have CloudFront forward — or “proxy” — non-cacheable requests for data, auth, etc., onto our underlying web server.

Note that this is substantially more work than what we saw in the last article, and the instructions are likely to be different for you based on the exact needs of your web app, so your mileage may vary. We’ll be changing DNS records and, depending on your web app, you may have to add some cache headers in order to prevent certain assets from ever being cached. We’ll get into all of this!

You may be wondering whether the setup we covered in the last article even offers any benefits because of what we’re doing here in this article. Given the long connection time, would we have been better off forgoing the CDN, and instead serve all our assets from the web server to avoid that longer wait? I measured this with my own web app, and the CDN version, above, was indeed faster, but not by a lot. The initial LCP page load was about 200-300ms faster. And remember, that’s just for the initial load. Once this connection has been set up, edge caching should add much more value for all your subsequent, asynchronously loaded chunks.

Setting up our DNS

Our end goal is to serve our entire web app from CloudFront. That means when we hit our domain, we want the results to come from CloudFront instead of whatever web server it’s currently linked to. That means we’ll have to modify our DNS settings. We’ll use AWS Route 53 for this.

I’m using mydemo.technology as an example, which is a domain I own. I’ll show you all the steps here. But by the time you read this, I’ll have removed this domain from my web app. So, later when I start showing you actual CNAME records, and similar, those will no longer exist.

Go to the Route 53 homepage, and click on hosted zones:

Showing the hosted zone configuration screen in the CloudFront settings.

Click Create hosted zone and enter the app’s domain:

Now, take note of the name servers listed in the next screen. They should look something like this.

We haven’t really accomplished anything yet. We told AWS we want it to manage this domain for us, and AWS gave us the name servers it’ll route our traffic through. To put this into effect, we need to go to wherever our domain is registered. There should be a place for you to enter in your own custom name servers.

Note that my domain is registered with GoDaddy and that is reflected in the screenshots throughout this article. The UI, settings, and options may differ from what you see in your registrar.

Warning: I recommend writing down the original name servers as well as any and all DNS records before making changes. That way, should something fail, you have everything you need to roll back to how things were before you started. And even if everything works fine, you’ll still want to re-add any other records into Route 53, ie MX records, etc.

Setting up a CloudFront distribution

Let’s make a CloudFront distribution to host our web app. We covered the basics in the last post, so we’ll get right to it. One big change from last time is what we enter for the origin domain. Do not put the top-level domain, e.g. your-app.net. What you need is the underlying domain where your app is hosted. If that’s Heroku, then enter the URL Heroku provides you.

Next, be sure to change the default protocol if you plan to use this site over a secure HTTPS connection:

This part is crucial. If your web app is running authentication, hosting data, or anything else, be sure to enable other verbs besides GET. If you skip this part, then any POST requests for authentication, mutating data, etc., will be rejected and fail. If your web app is doing nothing but serving assets and all those things are handled by external services, then outstanding! You have a great setup, and you can skip this step.

We have to make quite a few changes to the cache key and origin requests settings compared to last time:

We need to create a cache policy with a minimum TTL of 0, so non-caching headers we send back will are properly respected. You may also want to enable all query strings. I was seeing weird behavior when multiple GraphQL requests went out together with different query strings, which were ignored, causing all these requests to appear identical from CloudFront’s perspective.

My policy wound up looking like this:

For an origin request policy, if needed, we should make sure to send query strings and cookies for things like authentication and data queries to work. To be clear, this determines whether cookies and query strings will be sent from CloudFront down to your web server (e.g. Heroku, or similar).

Mine looks like this:

Lastly, for response headers policy, we can select “CORS With Preflight” from the list. In the end, your first two will have different names depending on how you set them up. But mine looks like this:

Let’s connect our domain, whatever it is, to this CloudFront distribution. Unfortunately, this is more work than you might expect. We need to prove to AWS that we actually own the domain because, for all Amazon knows, we don’t. We created a hosted zone in Route 53. And we took the nameservers it gave us and registered them with GoDaddy (or whoever your domain is registered with). But Amazon doesn’t know this yet. We need to demonstrate to Amazon that we do, in fact, control the DNS for this domain.

First, we’ll request an SSL certificate.

Next, let’s request the certificate link:

Now, we’ll select the option to request a public certificate option:

We need to provide the domain:

And, in my case, the certificate is pending:

So, I’m going to click it:

This proves that we own and control this domain. In a separate tab, go back to Route 53, and open our hosted zone:

Now we need to create the CNAME record. Copy the first part for the Record name. For example, if the CNAME is _xhyqtrajdkrr.mydemo.technology, then put the _xhyqtrajdkrr part. For the Record value, copy the entire value.

Assuming you registered the AWS name servers with your domain host, GoDaddy or whomever, AWS will soon be able to ping the DNS entry it just asked you to create, see the response it expects, and validate your certificate.

It can take time for the name servers you set at the beginning to propagate. In theory, it can take up to 72 hours, but it usually updates within an hour for me.

You’ll see success on the domain:

…as well as the certificate:

Whew! Almost done. Now let’s connect all of this to our CloudFront distribution. We can head back to the CloudFront settings screen. Now, under custom SSL certificate, we should see what we created (and any others you’ve created in the past):

Then, let’s add the app’s top-level domain:

All that’s left is to tell Route 53 to route our domain to this CloudFront distribution. So, let’s go back to Route 53 and create another DNS record.

We need to enter an A record for IPv4, and an AAAA record for IPv6. For both, leave the record name empty since we’re only registering our top-level domain and nothing else.

Select the A record type. Next, specify the record as an alias, then map the alias to the CloudFront distribution. That should open up an option to choose your CloudFront distribution, and since we previously registered the domain with CloudFront, you should see that distribution, and only that distribution when making a selection.

We repeat the exact same steps for the AAAA record type we need for IPv6 support.

Run your web app, and make sure it actually, you know, works. It should!

Things to test and verify

OK, while we’re technically done here, chances are there are still a few things left to do to meet the exact needs of your web app. Different apps have different needs and what I’ve demonstrated so far has walked us through the common steps to route things through CloudFront for better performance. Chances are there are things unique to your app that require more love. So, for that, let me cover a few possible additional items you might encounter during setup.

First off, make sure any POSTs you have are correctly sent to your origin. Assuming CloudFront is correctly configured to forward cookies to your origin, this should already work but there’s no harm in checking.

The bigger concern are all other GET requests that are sent to your web app. By default, any GET requests CloudFront receives, if cached, are served to your web app with the cached response. This can be disastrous. Any data requests to any REST or GraphQL endpoints sent with GET are cached by the CDN. And if you’re shipping a service worker, that will be cached too, instead of the normal behavior, where the current version is sent down in the background and updated if there are changes.

In order to tell CloudFront not to cache certain things, be sure to set the "Cache-Control" header to "no-cache" . If you’re using a framework, like Express, you can set middleware for your data access with something like this:

app.use("/graphql", (req, res, next) => {
  res.set("Cache-Control", "no-cache");
  next();
});
app.use(
  "/graphql",
  expressGraphql({
    schema: executableSchema,
    graphiql: true,
    rootValue: root
  })
); 

For things like service workers, you can put specific rules for those files before your static middleware:

app.get("/service-worker.js", express.static(__dirname + "/react/dist", { setHeaders: resp => resp.set("Cache-Control", "no-cache") }));
app.get("/sw-index-bundle.js", express.static(__dirname + "/react/dist", { setHeaders: resp => resp.set("Cache-Control", "no-cache") }));
app.use(express.static(__dirname + "/react/dist", { maxAge: 432000 * 1000 * 10 }));

And so on. Test everything thoroughly because there’s so much that can go wrong. And after each change you make, be sure to run a full invalidation in CloudFront and clear the cache before re-running your web app to test that things are correctly excluded from cache. You can do this from the Invalidations tab in CloudFront. Open that up and put /* in for the value, to clear everything.

A working CloudFront implementation

Now that we have everything running, let’s re-run our trace in WebPageTest:

And just like that, we no longer have setup connections like we saw before for our assets. For my own web app, I was seeing a substantial improvement of 500ms in LCP. That’s a solid win!


Hosting an entire web app on a CDN can offer the best of all worlds. We get edge caching for static resources, but without the connection costs. Unfortunately, this improvement doesn’t come for free. Getting all of the necessary proxying correctly set up isn’t entirely intuitive, and then there’s still the need to set up cache headers in order to avoid non-cacheable requests from winding up in the CDN’s cache.


Setting Up CloudFront to Host Your Web App originally published on CSS-Tricks. You should get the newsletter.



source https://css-tricks.com/setting-up-cloudfront-to-host-your-web-app/

Wednesday, April 27, 2022

Cool Hover Effects That Use Background Properties

A while ago, Geoff wrote an article about a cool hover effect. The effect relies on a combination of CSS pseudo-elements, transforms, and transitions. A lot of comments have shown that the same effect can be done using background properties. Geoff mentioned that was his initial thought and that’s what I was thinking as well. I am not saying the pseudo-element he landed on is bad, but knowing different methods to achieve the same effect can only be a good thing.

In this post, we will re-work that hover effect, but also expand it into other types of hover effects that only use CSS background properties.

You can see the background properties at work in that demo, as well as how we can use custom properties and the calc() function to do even more. We are going to learn how to combine all of these so we are left with nicely optimized code!

Hover effect #1

Let’s start with the first effect which is the reproduction of the one detailed by Geoff in his article. The code used to achieve that effect is the following:

.hover-1 {
  background: linear-gradient(#1095c1 0 0) var(--p, 0) / var(--p, 0) no-repeat;
  transition: .4s, background-position 0s;
}
.hover-1:hover {
  --p: 100%;
  color: #fff;
}

If we omit the color transition (which is optional), we only need three CSS declarations to achieve the effect. You are probably surprised how small the code is, but you will see how we got there.

First, let’s start with a simple background-size transition:

We are animating the size of a linear gradient from 0 100% to 100% 100%. That means the width is going from 0 to 100% while the background itself remains at full height. Nothing complex so far.

Let’s start our optimizations. We first transform our gradient to use the color only once:

background-image: linear-gradient(#1095c1 0 0);

The syntax might look a bit strange, but we are telling the browser that one color is applied to two color stops, and that’s enough to define a gradient in CSS. Both color stops are 0, so the browser automatically makes the last one 100% and fills our gradient with the same color. Shortcuts, FTW!

With background-size, we can omit the height because gradients are full height by default. We can do a transition from background-size: 0 to background-size: 100%.

.hover-1 {
  background-image: linear-gradient(#1095c1 0 0);
  background-size: 0;
  background-repeat: no-repeat;
  transition: .4s;
}
.hover-1:hover {
  background-size: 100%;
}

Let’s introduce a custom property to avoid the repetition of background-size:

.hover-1 {
  background-image: linear-gradient(#1095c1 0 0);
  background-size: var(--p, 0%);
  background-repeat: no-repeat;
  transition: .4s;
}
.hover-1:hover {
  --p: 100%;
}

We are not defining --p initially, so the fallback value (0% in our case) will be used. On hover, we define a value that replaces the fallback one ( 100%).

Now, let’s combine all the background properties using the shorthand version to get:

.hover-1 {
  background: linear-gradient(#1095c1 0 0) left / var(--p, 0%) no-repeat;
  transition: .4s;
}
.hover-1:hover {
  --p: 100%;
}

We are getting closer! Note that I have introduced a left value (for the background-position) which is mandatory when defining the size in the background shorthand. Plus, we need it anyway to achieve our hover effect.

We need to also update the position on hover. We can do that in two steps:

  1. Increase the size from the right on mouse hover.
  2. Decrease the size from the left on mouse out.

To do this, we need to update the background-position on hover as well:

We added two things to our code:

  • A background-position value of right on hover
  • A transition-duration of 0s on the background-position

This means that, on hover, we instantly change the background-position from left (see, we needed that value!) to right so the background’s size will increase from the right side. Then, when the mouse cursor leaves the link, the transition plays in reverse, from right to left, making it appear that we are decreasing the background’s size from the left side. Our hover effect is done!

But you said we only needed three declarations and there are four.

That’s true, nice catch. The left and right values can be changed to 0 0 and 100% 0, respectively; and since our gradient is already full height by default, we can get by using 0 and 100%.

.hover-1 {
  background: linear-gradient(#1095c1 0 0) 0 / var(--p, 0%) no-repeat;
  transition: .4s, background-position 0s;
}
.hover-1:hover {
  --p: 100%;
  background-position: 100%;
}

See how background-position and --p are using the same values? Now we can reduce the code down to three declarations:

.hover-1 {
  background: linear-gradient(#1095c1 0 0) var(--p, 0%) / var(--p,0%) no-repeat;
  transition: .4s, background-position 0s;
}
.hover-1:hover {
  --p: 100%;
}

The custom property --p is defining both the background position and size. On hover, It will update both of them as well. This is a perfect use case showing how custom properties can help us reduce redundant code and avoid writing properties more than once. We define our setting using custom properties and we only update the latter on hover.

But the effect Geoff described is doing the opposite, starting from left and ending at right. How do we do that when it seems we cannot rely on the same variable?

We can still use one variable and update our code slightly to achieve the opposite effect. What we want is to go from 100% to 0% instead of 0% to 100%. We have a difference of 100% that we can express using calc(), like this:

.hover-1 {
  background: linear-gradient(#1095c1 0 0) calc(100% - var(--p,0%)) / var(--p,0%) no-repeat;
  transition: .4s, background-position 0s;
}
.hover-1:hover {
  --p: 100%;
}

--p will change from 0% to 100%, but the background’s position will change from 100% to 0%, thanks to calc().

We still have three declarations and one custom property, but a different effect.

Before we move to the next hover effect, I want to highlight something important that you have probably noticed. When dealing with custom properties, I am using 0% (with a unit) instead of a unit-less 0. The unit-less zero may work when the custom property is alone, but will fail inside calc() where we need to explicitly define the unit. I may need another article to explain this quirk but always remember to add the unit when dealing with custom properties. I have two answers on StackOverflow (here and here) that go into more detail.

Hover effect #2

We need a more complex transition for this effect. Let’s take a look at a step-by-step illustration to understand what is happening.

Diagram showing the hover effect in three pieces.
Initially, a fixed-height, full-width gradient is outside of view. Then we move the gradient to the right to cover the bottom side. Finally, we increase the size of the gradient from the fixed height to 100% to cover the whole element.

We first have a background-position transition followed by a background-size one. Let’s translate this into code:

.hover-2 {
  background-image: linear-gradient(#1095c1 0 0);
  background-size: 100% .08em; /* .08em is our fixed height; modify as needed. */
  background-position: /* ??? */;
  background-repeat: no-repeat;
  transition: background-size .3s, background-position .3s .3s;
}
.hover-2:hover {
  transition: background-size .3s .3s, background-position .3s;
  background-size: 100% 100%;
  background-position: /* ??? */;
}

Note the use of two transition values. On hover, we need to first change the position and later the size, which is why we are adding a delay to the size. On mouse out, we do the opposite.

The question now is: what values do we use for background-position? We left those blank above. The background-size values are trivial, but the ones for background-position are not. And if we keep the actual configuration we’re unable to move our gradient.

Our gradient has a width equal to 100%, so we cannot use percentage values on background-position to move it.

Percentage values used with background-position are always a pain especially when you use them for the first time. Their behavior is non-intuitive but well defined and easy to understand if we get the logic behind it. I think it would take another article for a full explanation why it works this way, but here’s another “long” explanation I posted over at Stack Overflow. I recommend taking a few minutes to read that answer and you will thank me later!

The trick is to change the width to something different than 100%. Let’s use 200%. We’re not worried about the background exceeding the element because the overflow is hidden anyway.

.hover-2 {
  background-image: linear-gradient(#1095c1 0 0);
  background-size: 200% .08em;
  background-position: 200% 100%;
  background-repeat: no-repeat;
  transition: background-size .3s, background-position .3s .3s;
}
.hover-2:hover {
  transition: background-size .3s .3s, background-position .3s;
  background-size: 200% 100%;
  background-position: 100% 100%;
}

And here’s what we get:

It’s time to optimize our code. If we take the ideas we learned from the first hover effect, we can use shorthand properties and write fewer declarations to make this work:

.hover-2 {
  background: 
    linear-gradient(#1095c1 0 0) no-repeat
    var(--p, 200%) 100% / 200% var(--p, .08em);
  transition: .3s var(--t, 0s), background-position .3s calc(.3s - var(--t, 0s));
}
.hover-2:hover {
  --p: 100%;
  --t: .3s;
}

We add all the background properties together using the shorthand version then we use --p to express our values. The sizes change from .08em to 100% and the position from 200% to 100%

I am also using another variable --t , to optimize the transition property. On mouse hover we have it set to a .3s value, which gives us this:

transition: .3s .3s, background-position .3s 0s;

On mouse out, --t is undefined, so the fallback value will be used:

transition: .3s 0s, background-position .3s .3s;

Shouldn’t we have background-size in the transition?

That is indeed another optimization we can make. If we don’t specify any property it means “all” the properties, so the transition is defined for “all” the properties (including background-size and background-position). Then it’s defined again for background-position which is similar to defining it for background-size, then background-position.

“Similar” is different than saying something is the “same.” You will see a difference if you change more properties on hover, so the last optimization might be unsuitable in some cases.

Can we still optimize the code and use only one custom property?

Yes, we can! Ana Tudor shared a great article explaining how to create DRY switching where one custom property can update multiple properties. I won’t go into the details here, but our code can be revised like this:

.hover-2 {
  background: 
    linear-gradient(#1095c1 0 0) no-repeat
    calc(200% - var(--i, 0) * 100%) 100% / 200% calc(100% * var(--i, 0) + .08em);
  transition: .3s calc(var(--i, 0) * .3s), background-position .3s calc(.3s - calc(var(--i, 0) * .3s));
}
.hover-2:hover {
  --i: 1;
}

The --i custom property is initially undefined, so the fallback value, 0, is used. On hover though, we replace 0 with 1. You can do the math for both cases and get the values for each one. You can see that variable as a “switch” that update all our values at once on hover.

Again, we’re back to only three declarations for a pretty cool hover effect!

Hover effect #3

We are going to use two gradients instead of one for this effect. We will see that combining multiple gradients is another way to create fancy hover effects.

Here’s a diagram of what we’re doing:

We initially have two gradients that overflow the element so that they are out of view. Each one has a fixed height and toes up half of the element’s width. Then we slide them into view to make them visible. The first gradient is placed at the bottom-left and the second one at the top-right. Finally, we increase the height to cover the whole element.

Here’s how that looks in CSS:

.hover-3 {
  background-image:
    linear-gradient(#1095c1 0 0),
    linear-gradient(#1095c1 0 0);
  background-repeat: no-repeat;
  background-size: 50% .08em;
  background-position:
    -100% 100%,
    200% 0;
  transition: background-size .3s, background-position .3s .3s;
}
.hover-3:hover {
  background-size: 50% 100%;
  background-position:
    0 100%,
    100% 0;  
  transition: background-size .3s .3s, background-position .3s;
}

The code is almost the same as the other hover effects we’ve covered. The only difference is that we have two gradients with two different positions. The position values may look strange but, again, that’s related to how percentages work with the background-position property in CSS, so I highly recommend reading my Stack Overflow answer if you want to get into the gritty details.

Now let’s optimize! You get the idea by now — we’re using shorthand properties, custom properties, and calc() to tidy things up.

.hover-3 {
  --c: no-repeat linear-gradient(#1095c1 0 0);
  background: 
    var(--c) calc(-100% + var(--p, 0%)) 100% / 50% var(--p, .08em),
    var(--c) calc( 200% - var(--p, 0%)) 0    / 50% var(--p, .08em);
  transition: .3s var(--t, 0s), background-position .3s calc(.3s - var(--t, 0s));
}
.hover-3:hover {
  --p: 100%;
  --t: 0.3s;
}

I have added an extra custom property, --c, that defines the gradient since the same gradient is used in both places.

I am using 50.1% in that demo instead of 50% for the background size because it prevents a gap from showing between the gradients. I also added 1% to the positions for similar reasons.

Let’s do the second optimization by using the switch variable:

.hover-3 {
  --c: no-repeat linear-gradient(#1095c1 0 0);
  background: 
    var(--c) calc(-100% + var(--i, 0) * 100%) 100% / 50% calc(100% * var(--i, 0) + .08em),
    var(--c) calc( 200% - var(--i, 0) * 100%) 0 / 50% calc(100% * var(--i, 0) + .08em);
  transition: .3s calc(var(--i, 0) * .3s), background-position .3s calc(.3s - var(--i, 0) * .3s);
}
.hover-3:hover {
  --i: 1;
}

Are you started to see the patterns here? It’s not so much that the effects we’re making are difficult. It’s more the “final step” of code optimization. We start by writing verbose code with a lot of properties, then reduce it following simple rules (e.g. using shorthand, removing default values, avoiding redundant values, etc) to simplify things down as much as possible.

Hover effect #4

I will raise the difficulty level for this last effect, but you know enough from the other examples that I doubt you’ll have any issues with this one.

This hover effect relies on two conic gradients and more calculations.

Initially, we have both gradients with zero dimensions in Step 1. We increase the size of each one in Step 2. We keep increasing their widths until they fully cover the element, as shown in Step 3. After that, we slide them to the bottom to update their position. This is the “magic” part of the hover effect. Since both gradients will use the same coloration, changing their position in Step 4 will make no visual difference — but we will see a difference once we reduce the size on mouse out during Step 5.

If you compare Step 2 and Step 5, you can see that we have a different inclination. Let’s translate that into code:

.hover-4 {
  background-image:
    conic-gradient(/* ??? */),
    conic-gradient(/* ??? */);
  background-position:
    0 0,
    100% 0;
  background-size: 0% 200%;
  background-repeat: no-repeat;
  transition: background-size .4s, background-position 0s;
}
.hover-4:hover {
  background-size: /* ??? */ 200%;
  background-position:
    0 100%,
    100% 100%;
}

The positions are pretty clear. One gradient starts at top left (0 0) and ends at bottom left (0 100%) while the other starts at top right (100% 0) and ends at bottom right (100% 100%).

We’re using a transition on the background positions and sizes to reveal them. We only need a transition value for the background-size. And like before, background-position needs to change instantly, so we’re assigning a 0s value for the transition’s duration.

For the sizes, both gradient need to have 0 width and twice the element height (0% 200%). We will see later how their sizes change on hover. Let’s first define the gradient configuration.

The diagram below illustrates the configuration of each gradient:

Note that for the second gradient (indicated in green), we need to know the height to use it inside the conic-gradient we’re creating. For this reason, I am going to add a line-height that sets the element’s height and then try that same value for the conic gradient values we left out.

.hover-4 {
  --c: #1095c1;
  line-height: 1.2em;
  background-image:
    conic-gradient(from -135deg at 100%  50%, var(--c) 90deg, #0000 0),
    conic-gradient(from -135deg at 1.2em 50%, #0000 90deg, var(--c) 0);
  background-position:
    0 0,
    100% 0;
  background-size: 0% 200%;
  background-repeat: no-repeat;
  transition: background-size .4s, background-position 0s;
}
.hover-4:hover {
  background-size: /* ??? */ 200%;
  background-position:
    0 100%,
    100% 100%;
}

The last thing we have left is to figure out the background’s size. Intuitively, we may think that each gradient needs to take up half of the element’s width but that’s actually not enough.

We’re left with a large gap if we use 50% as the background-size value for both gradients.

We get a gap equal to the height, so we actually need to do is increase the size of each gradient by half the height on hover for them to cover the whole element.

.hover-4:hover {
  background-size: calc(50% + .6em) 200%;
  background-position:
    0 100%,
    100% 100%;
}

Here’s what we get after optimizing them like the previous examples:

.hover-4 {
  --c: #1095c1;
  line-height: 1.2em;
  background:
    conic-gradient(from -135deg at 100%  50%, var(--c) 90deg, #0000 0) 
      0  var(--p, 0%) / var(--s, 0%) 200% no-repeat,
    conic-gradient(from -135deg at 1.2em 50%, #0000 90deg, var(--c) 0) 
      100% var(--p, 0%) / var(--s, 0%) 200% no-repeat;
  transition: .4s, background-position 0s;
}
.hover-4:hover {
  --p: 100%;
  --s: calc(50% + .6em);
}

What about the version with only one custom property?

I will leave that for you! After looking at four similar hover effects, you should be able to get the final optimization down to a single custom property. Share your work in the comment section! There’s no prize, but we may end up with different implementations and ideas that benefit everyone!

Before we end, let me share a version of that last hover effect that Ana Tudor cooked up. It’s an improvement! But note that it lacks Firefox supports due to a known bug. Still, it’s a great idea that shows how to combine gradients with blend modes to create even cooler hover effects.

Wrapping up

We made four super cool hover effects! And even though they are different effects, they all take the same approach of using CSS background properties, custom properties, and calc(). Different combinations allowed us to make different versions, all using the same techniques that leave us with clean, maintainable code.

If you want to get some ideas, I made a collection of 500 (yes, 500!) hover effects, 400 of which are done without pseudo-elements. The four we covered in this article are just the tip of the iceberg!


Cool Hover Effects That Use Background Properties originally published on CSS-Tricks. You should get the newsletter.



source https://css-tricks.com/cool-hover-effects-using-background-properties/